Let X and Y be Banach spaces, L(X, Y) the space of bounded linear operators from X to Y and C(X, Y) its subspace of the compact operators. A sequence {Ti} in C(X, Y) is said to be an unconditional compact expansion of T ∈ L (X, Y) if ∑ Tix converges unconditionally to Tx for every x ∈ X. We prove: (1) If there exists a non-compact T ∈ L(X, Y) admitting an unconditional compact expansion then C(X, Y) is not complemented in L(X, Y), and (2) Let X and Y be classical Banach spaces (i.e. spaces whose duals are some LP(μ) spaces) then either L(X, Y) = C(X, Y) or C(X, Y) is not complemented in L(X, Y).