An optical probing of laser–plasma interactions can provide time-resolved measurements of plasma density; however, single-shot and multi-frame probing capabilities generally rely on complex setups with limited flexibility. We have demonstrated a new method for temporal resolution of the rapid dynamics ($\sim 170$ fs) of plasma evolution within a single laser shot based on the generation of several consecutive probe pulses from a single beta barium borate-based optical parametric amplifier using a fraction of the driver pulse with the possibility to adjust the central wavelengths and delays of particular pulses by optical delay lines. The flexibility and scalability of the proposed experimental technique are presented and discussed.