We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Numerous studies have explored the relationship between brain aging and major depressive disorder (MDD) and attempted to explain the phenomenon of faster brain aging in patients with MDD from multiple perspectives. However, a major challenge in this field is elucidating the ontological basis of these changes. Here, we aimed to explore the relationship between brain structural changes in MDD-related brain aging and neurotransmitter expression levels and transcriptomics.
Methods
Imaging data from 670 Japanese participants (MDD: health controls = 233:437) and the support vector regression model were utilized to predict and compare brain age between MDD patients and healthy controls. A map of differences in cortical thickness was generated, furthermore, spatial correlation analysis with neurotransmitters and correlation analysis with gene expression were performed.
Results
The degree of brain aging was found to be significantly higher in patients with MDD. Moreover, significant cortical thinning was observed in the left ventral area, and premotor eye field in patients with MDD. A significant correlation was observed between MDD-related cortical thinning and neurotransmitter receptors/transporters, including dopaminergic, serotonergic, and glutamatergic systems. Enriched Gene Ontology terms, including protein binding, plasma membrane, and protein processing, contribute to MDD-related cortical thinning.
Conclusions
The findings of this study provide further evidence that patients with MDD experience more severe brain aging, deepening our understanding of the underlying neural mechanisms and genetic basis of the brain changes involved. Additionally, these findings hold promise for the development of interventions aimed at preventing further deterioration in MDD-related brain aging, thus offering potential therapeutic avenues.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.