We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The total distance (or Wiener index) of a connected graph $G$ is the sum of all distances between unordered pairs of vertices of $G$. DeLaViña and Waller [‘Spanning trees with many leaves and average distance’, Electron. J. Combin.15(1) (2008), R33, 14 pp.] conjectured in 2008 that if $G$ has diameter $D>2$ and order $2D+1$, then the total distance of $G$ is at most the total distance of the cycle of the same order. In this note, we prove that this conjecture is true for 2-connected graphs.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}P(x)$ be a polynomial of degree $d$ with zeros $\alpha _1, \ldots, \alpha _d$. Stulov and Yang [‘An elementary inequality about the Mahler measure’, Involve6(4) (2013), 393–397] defined the total distance of$P$ as ${\rm td}(P)=\sum _{i=1}^{d} | | \alpha _i| -1|$. In this paper, using the method of explicit auxiliary functions, we study the spectrum of the total distance for totally positive algebraic integers and find its five smallest points. Moreover, for totally positive algebraic integers, we establish inequalities comparing the total distance with two standard measures and also the trace. We give numerical examples to show that our bounds are quite good. The polynomials involved in the auxiliary functions are found by a recursive algorithm.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.