This paper deals with robust guaranteed cost control for a class of linear uncertain descriptor systems with state delays and jumping parameters. The transition of the jumping parameters in the systems is governed by a finite-state Markov process. Based on stability theory for stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost controllers is derived. In terms of the LMI (linear matrix inequality) approach, a linear state feedback controller is designed to stochastically stabilise the given system with a cost function constraint. A convex optimisation problem with LMI constraints is formulated to design the suboptimal guaranteed cost controller. A numerical example demonstrates the effect of the proposed design approach.