Insects' development can be significantly impacted by various environmental factors, including temperature. Thus, this study aimed to investigate the effect of temperature on the predatory thrips, Scolothrips longicornis Priesner (Thysanoptera: Thripidae), which feeds on the strawberry spider mite, Tetranychus turkestani Ugarov and Nikolski (Trombidiformes: Tetranychidae). Under laboratory conditions (16:8 L:D, 75 ± 5% RH), the impact of various temperature regimens (15–37.5°C) on the development, population parameters, and mass production of S. longicornis was assessed. Additionally, an age-stage, two-sex life table of the species was constructed. The study revealed that S. longicornis' pre-adult developmental period decreased as temperature increased until 35°C, after which the developmental period increased. The longevity of both males and females displayed significant differences across the temperature range, with the longest lifespan observed at 15°C and the shortest at 37.5°C. At 26°C, the mean total fecundity of S. longicornis was significantly higher (53.52 eggs per female) than the fecundity observed at other temperature regimens. The intrinsic rate of increase (r) and finite rate of increase (λ) demonstrated the highest values at 35°C. While R0 increased as the temperature rose from 15 to 30°C, it rapidly decreased at 35 and 37.5°C. The findings of this study suggest that temperature plays a crucial role in enhancing the rate of development and reproduction of S. longicornis, and a temperature range of 26–30°C could be considered optimal for rearing and mass production of S. longicornis.