We present an innovative design for a two-head, gas-cooled multi-slab high-energy, high-repetition-rate amplifier aimed at mitigating thermally induced depolarization in a wide-bandwidth neodymium-doped glass gain medium. This architecture employs two quartz rotators (QRs) with opposite-handedness, strategically positioned within each multi-slab amplifier head, to enhance depolarization compensation. Theoretical modeling of this amplifier configuration demonstrates a 20× reduction in depolarization losses for a 70 mm beam operating at the central wavelength, compared to conventional approaches that utilize a single QR positioned between the amplifier heads. In addition, for a wide bandwidth source, the integration of QRs with opposite-handedness yields a 9× improvement in depolarization losses at the spectral extremes compared to the use of two QRs exhibiting the same optical handedness in both amplifier heads.