We express the operator norm of a weighted composition operator which acts from the Bloch space ℬ to H∞ as the supremum of a quantity involving the weight function, the inducing self-map, and the hyperbolic distance. We also express the essential norm of a weighted composition operator from ℬ to H∞ as the asymptotic upper bound of the same quantity. Moreover we study the estimate of the essential norm of a weighted composition operator from H∞ to itself.