We prove the consistency of
$$~~\text{add}\left( \mathcal{N} \right)<\operatorname{cov}\left( \mathcal{N} \right)<\mathfrak{p}\text{=}\mathfrak{s}\text{=}\mathfrak{g}< \text{add}\left( \mathcal{M} \right)=\text{cof}\left( \mathcal{M} \right)<\mathfrak{a}=\mathfrak{r}=\text{non}\left( N \right)=\mathfrak{c}$$
with
$\text{ZFC}$, where each of these cardinal invariants assume arbitrary uncountable regular values.