In the only salt evaporation pond retaining its natural setting of the historic Salina di Cervia (Italy), the northernmost salterns of the Mediterranean area, a number of potentially preservable textures derive from the interactions between photosynthetic mat producers and the sedimentary substrate. These morphologies occur at the beginning of the taphonomic processes when repeated emerged-submerged conditions take place. In these conditions the cohesive nature of the diatom- and cyanobacterial-derived mucilage favours the stabilization of otherwise ephemeral structures. Surface micromorphologies for which diatoms and cyanobacteria have played some active role when still living in the soft microlayer and down to the sediment-water interface, such as during the gliding motility, can overcome the surface layer of most intense mixing (i.e., the taphonomically active zone) and keep traces of them in the fossil record either as body fossils or as texture contributors. Tiny microbial-derived remnants, such as filaments and biofilm strands of halotolerant microorganisms, while fragile upon their formation, can therefore stabilize as biosignatures when combined with salt precipitation. Halophilic and halotolerant ecosystems are models for life in extreme environments (analogue sites) with similarity to those strongly suspected to occur and/or have occurred on Mars and on other planetary bodies. The study of hypersaline systems such as Salina di Cervia which harbour diverse and abundant microbial life, can be relevant for astrobiology since it allows the investigation of potential biosignatures and their preservation, and of further understand the range of conditions and the planetary processes sustaining potentially habitable systems.