We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Experiments often focus on recovering an average effect of a treatment on an outcome. A subgroup analysis involves identifying subgroups of observations for which the treatment is particularly efficacious or deleterious. Since these subgroups are not preregistered but instead discovered from the data, significant inferential issues emerge. We discuss methods for conduct honest inference on subgroups, meaning generating valid p-values and confidence intervals which account for the fact that the subgroups were not specified a priori. Central to this approach is the split-sample strategy, where half the data is used to identify effects and the other half to test them. After an intuitive and formal discussion of these issues, we provide simulation evidence and two examples illustrating these concepts in practice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.