We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We simulate habitat loss and derive species accumulation curves (SAC) and endemics–area relationship curves (EAR) in order to predict expected extinctions. The EAR may have a very different shape depending on the geometry of habitat loss. If area is lost in a spatially random way we may preserve more species than if area is lost in a clustered way, but with a larger extinction debt. If area is lost continuously inwards (‘inward EAR’) then the immediate loss of species can be much greater than if the same area is lost from the core towards its edge (‘outward EAR’). The main reason for these effects is the spatial autocorrelation of species distributions and the definition of endemics. Spatial autocorrelation means that sampling plots that are clustered are occupied by communities with more similar composition. If endemism is defined in relation to the study area, we can observe great species losses at the edge due to the large numbers of ranges that intersect the study area edge, but most of these species persist outside the study area. If instead we examine endemism on a global scale then the pattern of species losses is not influenced by the geometry of habitat loss.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.