We consider single-server queues with exponentially distributed service times, in which the arrival process is governed by a semi-Markov process (SMP). Two service disciplines, processor sharing (PS) and random service (RS), are investigated. We note that the sojourn time distribution of a type-l customer who, upon his arrival, meets k customers already present in the SMP/M/1/PS queue is identical to the waiting time distribution of a type-l customer who, upon his arrival, meets k+1 customers already present in the SMP/M/1/RS queue. Two sets of system equations, one for the joint transform of the sojourn time and queue size distributions in the SMP/M/1/PS queue, and the other for the joint transform of the waiting time and queue size distributions in the SMP/M/1/RS queue, are derived. Using these equations, the mean sojourn time in the SMP/M/1/PS queue and the mean waiting time in the SMP/M/1/RS queue are obtained. We also consider a special case of the SMP in which the interarrival time distribution is determined only by the type of the customer who has most recently arrived. Numerical examples are also presented.