When gas flows through corrugated pipes, pressure waves interacting with vortex shedding can produce distinct tonal noise and structural vibration. Based on established observations, a model is proposed which couples an acoustic pipe and self-excited oscillations with vortex shedding over the corrugation cavities. In the model, the acoustic response of the corrugated pipe is simulated by connecting the lossless medium moving with a constant velocity with a source based on a discrete distribution of van der Pol oscillators arranged along the pipe. Our time accurate solutions exhibit dynamic behavior consistent with that experimentally observed, including the lock-in frequency of vortex shedding, standing waves and the onset fluid velocity capable of generating the lock-in.