Vegetative propagules of an invasive riparian weed, giant reed, were collected monthly from two Southern California sites and planted in a greenhouse from August 1998 to July 1999. Rooting and emergence frequency of planted pieces and time to emergence, growth rate, and number of developing shoots were recorded; soluble carbohydrates were analyzed. Response variables were regressed against climatic, seasonal, and site effects using a stepwise model. Rhizomes established much more frequently than stems in all months. Time of year of collection was found to be the most important factor determining establishment of all propagule types. The interaction of maximum daily temperature and precipitation at the field sites had a lesser, but significant effect on rooting frequency. The lack of a consistent correlation between any of the response variables and climate or site may indicate broad environmental tolerance. Seasonal patterns in emergence, growth, and soluble carbohydrates suggest that control by shoot removal would be most effective in fall when rhizome carbohydrate reserves are the lowest, resulting in the greatest reduction in regrowth. Chemical control with phloem-mobile herbicides would be most effective in late summer or early fall, when carbohydrates are moving from leaves to belowground structures but prior to natural leaf senescence.