We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Infection severity and persistence in a host population is affected by variation in host susceptibility. External disturbance can exacerbate/reduce individual variation by affecting the interactions between the host and its parasites and the dynamics of infection and transmission. We investigated the impact of three sources of disturbance (climate change, the presence of a second parasite species and anthelmintic treatment) on the dynamics of infection and shedding of three common parasites of the rabbit. Data were collected from long-term field studies and laboratory experiments and analysed using mathematical modelling and analytical tools. Our studies show that they all affect host–parasite interactions by altering the intensity of infection and/or the degree of parasite shedding. They also generate patterns of infections that could not have been predicted in the absence of these disturbances or from performing analyses at a different temporal scale. Modelling simulations confirmed the complexity of the processes involved and identified the critical interactions shaping the patterns observed.