Leaching and volatilization of N from urea, and precipitation and fixing of Zn by commercial fertilizers, has led to excessive costs for farmers and problems for the environment. Incorporating fertilizers in a porous material such as diatomite can prevent these losses by slowing the nutrient release. A new fertilizer formulation, based on the urea-zinc (UZn) complex in the eutectic solution of salt-urea was prepared. In the following, UZn was incorporated into diatomite and nano-diatomite by using hydroxypropyl methylcellulose (HPMC) as a binder. The treatments included the following: U: urea; UZn: urea-Zn; UZn-D: urea-Zn-diatomite; UZn-ND: urea-Zn-nano-diatomite; UZn-D-B: urea-Zn-diatomite-binder; and UZn-ND-B: urea-Zn-nano-diatomite-binder. The slow-release urea fertilizers (SRUFs) were characterized using FESEM/EDS, FTIR, CHN, XRD, DLS, and zeta potential techniques. Urea slow-release behavior, kinetics in water, and available Zn and N-forms leaching in the soil column were evaluated compared with conventional urea and zinc fertilizers. The pattern of release of urea in water was sigmoidal and after 12 h, only 20% of urea was released from fertilizers containing diatomite and HPMC. The NO3– release pattern in the soil started with a 12-day delay, and after that, the rate of NO3– leaching decreased by two to three times in the application of fertilizers containing HPMC compared with urea. The Zn concentration in the leachates of columns supplied with SRUFs was 35% less than for those supplied with ZnSO4. The results showed that the SRUFs make N and Zn available in the soil and but reduce the rate of their release.