Motivated by the development of efficient Monte Carlo methodsfor PDE models in molecular dynamics,we establish a new probabilistic interpretation of a family of divergence formoperators with discontinuous coefficients at the interfaceof two open subsets of $\mathbb{R}^d$ . This family of operators includes the case of thelinearized Poisson-Boltzmann equation used tocompute the electrostatic free energy of a molecule.More precisely, we explicitly construct a Markov process whoseinfinitesimal generator belongs to this family, as the solution of a SDEincluding a non standard local time term related to the interfaceof discontinuity. We then prove an extendedFeynman-Kac formula for the Poisson-Boltzmann equation.This formula allows us to justifyvarious probabilistic numerical methods toapproximate the free energy of a molecule.We analyse the convergence rate of these simulation procedures andnumerically compare them on idealized molecules models.