We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous research by Goldstone et al. (2010) generated a highly accurate predictive model of state-level political instability. Notably, this model identifies political institutions – and partial democracy with factionalism, specifically – as the most compelling factors explaining when and where instability events are likely to occur. This article reassesses the model’s explanatory power and makes three related points: (1) the model’s predictive power varies substantially over time; (2) its predictive power peaked in the period used for out-of-sample validation (1995–2004) in the original study and (3) the model performs relatively poorly in the more recent period. The authors find that this decline is not simply due to the Arab Uprisings, instability events that occurred in autocracies. Similar issues are found with attempts to predict nonviolent uprisings (Chenoweth and Ulfelder 2017) and armed conflict onset and continuation (Hegre et al. 2013). These results inform two conclusions: (1) the drivers of instability are not constant over time and (2) care must be exercised in interpreting prediction exercises as evidence in favor or dispositive of theoretical mechanisms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.