Yellow nutsedge (Cyperus esculentus L.) is one of the most problematic weeds in turfgrass due to its fast growth rate and high tuber production. Effective long-term control relies on translocation of systemic herbicides to underground tubers. Two identical trials were conducted simultaneously in separate greenhouses to evaluate the effect of several acetolactate synthase (ALS)- and protoporphyrinogen oxidase (PPO)-inhibiting postemergence herbicides on C. esculentus tuber production and viability. Seven tubers were planted into 1-L pots, and plants were allowed to mature for 6 wk before trial initiation. Treatments included pyrimisulfan at 73 g ai ha−1 once or 49 g ai ha−1 twice, imazosulfuron at 736 g ai ha−1 once or 420 g ai ha−1 twice, carfentrazone-ethyl + sulfentrazone at 22 + 198 g ai ha−1 once or 14 + 127 g ai ha−1 twice, halosulfuron at 70 g ai ha−1 once or 35 g ai ha−1 twice, and a nontreated control. Sequential applications were made 3 wk after initial treatment (WAIT) for both trials. Both single and sequential applications of carfentrazone-ethyl + sulfentrazone exhibited the quickest control (80% to 83% 4 WAIT). Two applications of imazosulfuron resulted in the greatest reduction in tuber number (81%) and tuber dry biomass (85%), while one application of carfentrazone-ethyl + sulfentrazone resulted in the greatest reduction in shoot biomass (71%). The viability of tubers that were recovered from each pot was reduced 48% to 70%, with the greatest reduction in response to carfentrazone-ethyl + sulfentrazone. Although two applications of pyrimisulfan only resulted in tuber number and shoot biomass reductions of 66% and 38%, respectively, tuber dry biomass reduction was 80%. Therefore, pyrimisulfan, imazosulfuron, halosulfuron, and carfentrazone-ethyl + sulfentrazone are all viable options for long-term C. esculentus control in turfgrass.