We present a conceptual, but empirically applicable, model for determining the optimal allocation of resources between exclusion and control activities for managing an invasive species with an uncertain discovery time. This model is used to investigate how to allocate limited resources between activities before and after the first discovery of an invasive species and the effects of the characteristics of an invasive species on limited resource allocation. The optimality conditions show that it is economically efficient to spend a larger share of outlays for exclusion activities before, rather than after, a species is first discovered, up to a threshold point. We also find that, after discovery, more exclusionary measures and fewer control measures are optimal, when the pest population is less than a threshold. As the pest population increases beyond this threshold, the exclusionary measures are no longer optimal. Finally, a comparative dynamic analysis indicates that the efficient level of total expenditures on preventive and control measures decreases with the level of the invasive species stock and increases with the intrinsic population growth rate, the rate of additional discoveries avoided, and the maximum possible pest population.