We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lung cancer ranks high among the causes of mortality in cancer patients, as per the most recent World Health Organization report. Proton therapy offers a precise approach to treating lung cancer by delivering protons with high accuracy to the targeted site. However, inaccuracies in proton delivery can lead to increased toxicity in healthy tissues. This study aims to investigate the correlation between proton beam dose profiles in lung tumours and the scattered gamma particles.
Material and methods:
The study utilised the Gate simulation software to simulate proton beam radiation and an imaging system for prompt gamma imaging during proton therapy. An anthropomorphic Non-uniform rational B-spline (NURBS) cardiac and torso (NCAT) phantom was employed to replicate lung tumours of various sizes. The imaging system comprised a multi-slit collimation system, CsI(Tl) scintillator arrays and a multichannel data acquisition system. Simulations were conducted to explore the relationship between prompt gamma detection and proton range for different tumour sizes.
Results:
Following 60 MeV proton irradiation of the NCAT phantom, the study examined the gamma energy spectrum, identifying peak intensities at energies of 2.31, 3.8, 4.44, 5.27 and 6.13 MeV. Adjustments to the proton beam source tailored to tumour sizes achieved a coverage rate of 98%. Optimal energies ranging from 77 to 91.5 MeV were determined for varying tumour volumes, supported by dose distribution profiles and prompt gamma distribution illustrations.
Discussion:
The study evaluated the viability of utilising 2D gamma imaging with a multi-slit collimator scintillation camera for real-time monitoring of dose delivery during proton therapy for lung cancer. The findings indicated that this method is most suitable for small lung tumours (radius ≤ 12 mm) due to reduced gamma emission from larger tumours.
Conclusion:
While the study demonstrates promising results in range estimation using prompt gamma particles, challenges were encountered in accurately estimating large tumours using this method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.