We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the inter-fraction variation in interstitial high-dose-rate (HDR) brachytherapy. To assess the positional displacement of catheters during the fractions and the resultant impact on dosimetry.
Background
Although brachytherapy continues to be a key cornerstone of cancer care, it is clear that treatment innovations are needed to build on this success and ensure that brachytherapy continues to provide quality care for patients. The dosimetric advantages offered by HDR brachytherapy to the tumour volume rely on catheter positions being accurately reproduced for all fractions of treatment.
Materials and methods
A total of 66 patients treated over a period of 22 months were considered for this study. All the patients underwent computer tomography (CT) scan and three-dimensional treatment planning was carried out. Brachytherapy treatment was delivered by the HDR afterloading system. On completing the last fraction, CT scan was repeated and treatment re-planning was done. The variation in position of the implanted applicators and their impact on dosimetric parameters were analysed using both the plans.
Results
For all breast-implant patients, the catheter displacement and D90 dose to clinical target volume were <3 mm and 3%, respectively. The displacement for carcinoma of the tongue, carcinoma of the buccal mucosa, carcinoma of the floor of mouth, carcinoma of the cervix, soft-tissue sarcoma and carcinoma of the lip were comparatively high.
Conclusion
Inter-fraction errors occur frequently in interstitial HDR brachytherapy. If no action is taken, it will result in a significant risk of geometrical miss and overdose to the organs at risk. It is not recommended to use a single plan to deliver all the fractions. Imaging is recommended before each fraction and decision on re-planning must be taken.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.