We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine the feasibility of an anthropomorphic breast polyurethane-based three-dimensional (3D) dosimeter with cavity to measure dose distributions and skin dose for a commercial strut-based applicator strut-adjusted volume implant (SAVI™) 6–1.
Materials and methods
An anthropomorphic breast 3D dosimeter was created with a cavity to accommodate the SAVI™ strut-based device. 2 Gy was prescribed to the breast dosimeter having D95 to planning target volume evaluation (PTV_EVAL) while limiting 125% of the prescribed dose to the skin. Independent dose distribution verification was performed with GAFCHROMIC® EBT2 film. The dose distribution from the 3D dosimeter was compared to the distributions from commercial brachytherapy treatment planning system (TPS) and film. Point skin doses, line profiles and dose–volume histogram (DVHs) for the skin and PTV_EVAL were compared.
Results
The maximum difference in skin dose for TPS and the 3D dosimeter was 4% whereas 41% between the TPS and EBT2 film. The maximum dose difference for line profiles between TPS, 3D dosimeter, and film was 4·1%. DVHs of skin and PTV_EVAL for TPS and 3D dosimeter differed by a maximum of 4% at 5 mm depth and skin differed by a maximum 1·5% between TPS and 3D dosimeter. The criterion for gamma analysis comparison was 92·5% at ±5%±3 mm criterion. The TPS demonstrated at least ±5% comparability in predicting dose to the skin, PTV_EVAL and normal breast tissue.
Conclusions
3D anthropomorphic polyurethane dosimeter with cavity gives comparable results to the TPS dose predictions and GAFCHROMIC® EBT2 film results in the context of HDR brachytherapy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.