We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Larger grey matter volume of the inferior frontal gyrus (IFG) is among the most replicated biomarkers of genetic risk for bipolar disorders (BD). However, the IFG is a heterogeneous prefrontal region, and volumetric findings can be attributable to changes in cortical thickness (CT), surface area (SA) or gyrification. Here, we investigated the morphometry of IFG in participants at genetic risk for BD.
Methods
We quantified the IFG cortical grey matter volume in 29 affected, 32 unaffected relatives of BD probands, and 42 controls. We then examined SA, CT, and cortical folding in subregions of the IFG.
Results
We found volumetric group differences in the right IFG, with the largest volumes in unaffected high-risk and smallest in control participants (F2,192 = 3.07, p = 0.01). The volume alterations were localized to the pars triangularis of the IFG (F2,97 = 4.05, p = 0.02), with no differences in pars opercularis or pars orbitalis. Pars triangularis volume was highly correlated with its SA [Pearson r(101) = 0.88, p < 0.001], which significantly differed between the groups (F2,97 = 4.45, p = 0.01). As with volume, the mean SA of the pars triangularis was greater in unaffected (corrected p = 0.02) and affected relatives (corrected p = 0.05) compared with controls. We did not find group differences in pars triangularis CT or gyrification.
Conclusions
These findings strengthen prior knowledge about the volumetric findings in this region and provide a new insight into the localization and topology of IFG alterations. The unique nature of rIFG morphology in BD, with larger volume and SA early in the course of illness, could have practical implications for detection of participants at risk for BD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.