We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider a new framework where two types of data are available:experimental dataY1,...,Ynsupposed to be i.i.d from Y and outputs from a simulated reduced model.We develop a procedure for parameter estimation to characterize a feature of thephenomenon Y. We prove a risk bound qualifying the proposed procedure interms of the number of experimental data n, reduced model complexity andcomputing budget m. The method we present is general enough to cover awide range of applications. To illustrate our procedure we provide a numericalexample.
We deal with the problem of choosing a piecewise constant estimator of a regression function s mapping $\mathcal{X}$ into $\mathbb{R}$.We consider a non Gaussian regression framework with deterministic design points, and we adopt the non asymptotic approach of model selection via penalization developed by Birgé and Massart. Given a collection of partitions of $\mathcal{X}$, with possibly exponential complexity,and the corresponding collection of piecewise constant estimators, we propose a penalized least squares criterion which selects a partition whose associated estimator performs approximately as well as the best one, in the sense that its quadratic risk is close to the infimum of the risks. The risk bound we provide is non asymptotic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.