We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exposure to early life stress (ELS) strongly predicts prevalent, impairing, and costly psychiatric illness throughout life including mental disorders. The reason, some individuals are more vulnerable to ELS whereas others remain resilient, is poorly understood. There is a need for better understanding of early biological changes triggered by ELS with responsibility to negative outcomes in health.
Objectives
We stratify animals after ELS according to corticosterone levels. [1] Re-challenging the animals to a second stressor, chronic social defeat (CSD) [2], in adulthood was performed to understand individual trajectories depending on corticosterone exposure during early adverse conditions.
Methods
We performed ELS as previously reported [1]. Behavior of mothers was observed during ELS. Correlation between level of corticosterone and behavior observed in dams. ELS animals were exposed to a second stress in adulthood. A battery of tests for different behavioral domains was performed. Behavioral analyses was combined with assessment of litter HPA system reactivity and observed behavior in dams.
Results
Stress dams where significantly higher in number of sorties over whole observation period, time dams spent outside the nest differed. We could correlate the number of sorties on p3 with corticosterone plasma level at p9. Control dams spent significantly more time outside in 9pm recordings than stress animals. We could show reduced interaction with social juvenile targets in sociability test for CSD mice. Light dark transition was significantly higher for control mice compared to CSD but lower for control vs ELS animals.
Conclusions
Behavior in dams during ELS correlates with chronic stress coping mechanisms in offspring’s adulthood.
Disclosure
No significant relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.