We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Coherent anti-Stokes Raman scattering (CARS) spectroscopy is a technique that has been widely applied for temperature measurements in combustion and for microscopic imaging of cell structures. CARS spectroscopy is discussed in detail in this chapter as an example of a nonlinear optical technique. The concept of the nonlinear susceptibility is introduced, and the derivation of the susceptibility tensor appropriate for CARS spectroscopy is described in detail. A key aspect of this derivation is the incorporation of the electric dipole transition matrix elements for the Raman scattering process into the susceptibility tensor. CARS spectral modeling and collisional narrowing of CARS spectral features are discussed in detail. The emerging field of femtosecond CARS is discussed. The chapter concludes with detailed examples of CARS intensity calculations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.