We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To conduct a comprehensive literature review of the area of neural stem cells and neuropsychiatry.
Methods:
‘Neural stem cells’ (NSCs) and ‘neurogenesis’ were used as keywords in Medline (1966 – November 2006) to identify relevant papers in the areas of Alzheimer’s disease (AD), depression, schizophrenia and Parkinson’s disease (PD). This list was supplemented with papers from reference lists of seminal reviews.
Results:
The concept of a ‘stem cell’ continues to evolve and is currently defined by operational criteria related to symmetrical renewal, multipotency and functional viability. In vivo adult mammalian neurogenesis occurs in discrete niches in the subventricular and subgranular zones – however, functional precursor cells can be generated in vitro from a wide variety of biological sources. Both artificial and physiological microenvironment is therefore critical to the characteristics and behaviour of neural precursors, and it is not straightforward how results from the laboratory can be extrapolated to the living organism. Transplant strategies in PD have shown that it is possible for primitive neural tissue to engraft into neuropathic brain areas, become biologically functional and lead to amelioration of clinical signs and symptoms. However, with long-term follow-up, significant problems related to intractable side-effects and potential neoplastic growth have been reported. These are therefore the potentials and pitfalls for NSC technology in neuropsychiatry. In AD, the physiology of amyloid precursor protein may directly interact with NSCs, and a role in memory function has been speculated. The role of endogenous neurogenesis has also been implicated in the etiology of depression. The significance of NSCs and neurogenesis for schizophrenia is still emerging.
Conclusions:
There are a number of technical and conceptual challenges ahead before the promise of NSCs can be harnessed for the understanding and treatment of neuropsychiatric disorders. Further research into fundamental NSC biology and how this interacts with the neuropsychiatric disease processes is required.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.