We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the moments and the distribution of hitting times on the lollipop graph which is the graph exhibiting the maximum expected hitting time among all the graphs having the same number of nodes. We obtain recurrence relations for the moments of all order and we use these relations to analyze the asymptotic behavior of the hitting time distribution when the number of nodes tends to infinity.
We establish upper bounds for moments of smoothed quadratic Dirichlet character sums under the generalized Riemann hypothesis, confirming a conjecture of M. Jutila [‘On sums of real characters’, Tr. Mat. Inst. Steklova132 (1973), 247–250].
This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus $\geq 3$. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.
The concept of mass in linear motion was quite simple. However, the rotational analog, the moment of inertia, is comparatively complicated. In this chapter, we present a thorough introduction to the moment of inertia, and we develop the tools needed to compute this quantity for point masses, systems of discrete masses, and continuous rigid bodies about different axes of rotation. The chapter ends with some useful theorems that allow us to extend the application of these fundamental tools.
Omega ratio, a risk-return performance measure, is defined as the ratio of the expected upside deviation of return to the expected downside deviation of return from a predetermined threshold described by an investor. Motivated by finding a solution protected against sampling errors, in this paper, we focus on the worst-case Omega ratio under distributional uncertainty and its application to robust portfolio selection. The main idea is to deal with optimization problems with all uncertain parameters within an uncertainty set. The uncertainty set of the distribution of returns given characteristic information, including the first two orders of moments and the Wasserstein distance, can handle data problems with uncertainty while making the calculation feasible.
This chapter defines the COM–Poisson distribution in greater detail, discussing its associated attributes and computing tools available for analysis. This chapter first details how the COM–Poisson distribution was derived, and then describes the probability distribution, and introduces computing functions available in R that can be used to determine various probabilistic quantities of interest, including the normalizing constant, probability and cumulative distribution functions, random number generation, mean, and variance. The chapter then outlines the distributional and statistical properties associated with this model, and discusses parameter estimation and statistical inference associated with the COM–Poisson model. Various processes for generating random data are then discussed, along with associated available R computing tools. Continued discussion provides reparametrizations of the density function that serve as alternative forms for statistical analyses and model development, considers the COM–Poisson as a weighted Poisson distribution, and details discussion describing the various ways to approximate the COM–Poisson normalizing function.
The existence of moments of first downward passage times of a spectrally negative Lévy process is governed by the general dynamics of the Lévy process, i.e. whether it is drifting to
$+\infty$
,
$-\infty$
, or oscillating. Whenever the Lévy process drifts to
$+\infty$
, we prove that the
$\kappa$
th moment of the first passage time (conditioned to be finite) exists if and only if the
$(\kappa+1)$
th moment of the Lévy jump measure exists. This generalizes a result shown earlier by Delbaen for Cramér–Lundberg risk processes. Whenever the Lévy process drifts to
$-\infty$
, we prove that all moments of the first passage time exist, while for an oscillating Lévy process we derive conditions for non-existence of the moments, and in particular we show that no integer moments exist.
Matryoshka dolls, the traditional Russian nesting figurines, are known worldwide for each doll’s encapsulation of a sequence of smaller dolls. In this paper, we exploit the structure of a new sequence of nested matrices we call matryoshkan matrices in order to compute the moments of the one-dimensional polynomial processes, a large class of Markov processes. We characterize the salient properties of matryoshkan matrices that allow us to compute these moments in closed form at a specific time without computing the entire path of the process. This simplifies the computation of the polynomial process moments significantly. Through our method, we derive explicit expressions for both transient and steady-state moments of this class of Markov processes. We demonstrate the applicability of this method through explicit examples such as shot noise processes, growth–collapse processes, ephemerally self-exciting processes, and affine stochastic differential equations from the finance literature. We also show that we can derive explicit expressions for the self-exciting Hawkes process, for which finding closed-form moment expressions has been an open problem since their introduction in 1971. In general, our techniques can be used for any Markov process for which the infinitesimal generator of an arbitrary polynomial is itself a polynomial of equal or lower order.
We derive formulae for the moments of the time of ruin in both ordinary and modified Sparre Andersen risk models without specifying either the inter-claim time distribution or the individual claim amount distribution. We illustrate the application of our results in the special case of exponentially distributed claims, as well as for the following ordinary models: the classical risk model, phase-type(2) risk models, and the Erlang(
$\mathscr{n}$
) risk model. We also show how the key quantities for modified models can be found.
We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.
The Halphen type A (Hal-A) frequency distribution has been employed for frequency analyses of hydrometeorological and hydrological extremes. This chapter derives this distribution using entropy theory and discusses the estimation of its parameters using the methods of entropy, moments, probability moments, L-moments, cumulative moments, and maximum likelihood estimation.
Chapter 2 provides a review of probability theory, focusing on the topics that are essential for the remainder of the book. Included are the elements of set theory, the axioms and basic rules of probability theory, the concept of a random variable, discrete and continuous random variables, univariate and multivariate probability distributions, reliability and hazard functions, expectation and statistical moments, distributions and moments of functions of random variables, and extreme-value distributions. Appendix A presents commonly used probability distribution models with their properties, for easy reference. Thorough mastery of the material in this chapter is essential for understanding the remainder of the book.
We establish sharp bounds for the second moment of symmetric-square L-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of the L-function, our interval is smaller than previous known results. More specifically, for $\left \lvert t_j\right \rvert $ of size T, our interval is of size $T^{1/5}$, whereas the previous best was $T^{1/3}$, from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square L-function. More specifically, we get subconvexity at $s=1/2+it$ provided $\left \lvert t_j\right \rvert ^{6/7+\delta }\le \lvert t\rvert \le (2-\delta )\left \lvert t_j\right \rvert $ for any fixed $\delta>0$. Since $\lvert t\rvert $ can be taken significantly smaller than $\left \lvert t_j\right \rvert $, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square L-function in the spectral aspect at $s=1/2$.
We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog–Biro–Cherubini–Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.
The aim of this chapter is to introduce the formal theory of general orthogonal polynomials and present the two dual combinatorial approaches due to Foata for the special function aspects of the orthogonal polynomials, and to Flajolet and Viennot for the lattice paths models used for the moments and general orthogonal polynomials. After reviewing the standard interplay between orthogonal polynomials and combinatorics, influenced by their pioneering works, we will report on some recent topics developed in this cross-cutting field of these two branches of mathematics.
We study a continuous-time branching random walk (BRW) on the lattice ℤd, d ∈ ℕ, with a single source of branching, that is the lattice point where the birth and death of particles can occur. The random walk is assumed to be spatially homogeneous, symmetric and irreducible but, in contrast to the majority of previous investigations, the random walk transition intensities a(x, y) decrease as |y − x|−(d+α) for |y − x| → ∞, where α ∈ (0, 2), that leads to an infinite variance of the random walk jumps. The mechanism of the birth and death of particles at the source is governed by a continuous-time Markov branching process. The source intensity is characterized by a certain parameter β. We calculate the long-time asymptotic behaviour for all integer moments for the number of particles at each lattice point and for the total population size. With respect to the parameter β, a non-trivial critical point βc > 0 is found for every d ≥ 1. In particular, if β > βc the evolutionary operator generated a behaviour of the first moment for the number of particles has a positive eigenvalue. The existence of a positive eigenvalue yields an exponential growth in t of the particle numbers in the case β > βc called supercritical. Classification of the BRW treated as subcritical (β < βc) or critical (β = βc) for the heavy-tailed random walk jumps is more complicated than for a random walk with a finite variance of jumps. We study the asymptotic behaviour of all integer moments of a number of particles at any point y ∈ ℤd and of the particle population on ℤd according to the ratio d/α.
Hawkes processes have been widely used in many areas, but their probability properties can be quite difficult. In this paper an elementary approach is presented to obtain moments of Hawkes processes and/or the intensity of a number of marked Hawkes processes, in which the detailed outline is given step by step; it works not only for all Markovian Hawkes processes but also for some non-Markovian Hawkes processes. The approach is simpler and more convenient than usual methods such as the Dynkin formula and martingale methods. The method is applied to one-dimensional Hawkes processes and other related processes such as Cox processes, dynamic contagion processes, inhomogeneous Poisson processes, and non-Markovian cases. Several results are obtained which may be useful in studying Hawkes processes and other counting processes. Our proposed method is an extension of the Dynkin formula, which is simple and easy to use.
We derive moment identities for the stochastic integrals of multiparameter processes in a random-connection model based on a point process admitting a Papangelou intensity. The identities are written using sums over partitions, and they reduce to sums over non-flat partition diagrams if the multiparameter processes vanish on diagonals. As an application, we obtain general identities for the moments of k-hop counts in the random-connection model, which simplify the derivations available in the literature.