We explain three methods for showing that the $p$-adic monodromy of a modular family of abelian varieties is ‘as large as possible', and illustrate them in the case of the ordinary locus of the moduli space of $g$-dimensional principally polarized abelian varieties over a field of characteristic $p$. The first method originated from Ribet's proof of the irreducibility of the Igusa tower for Hilbert modular varieties. The second and third methods both exploit Hecke correspondences near a hypersymmetric point, but in slightly different ways. The third method was inspired by work of Hida, plus a group theoretic argument for the maximality of $\ell$-adic monodromy with $\ell\neq p$.