We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Modular graph functions and modular graph forms map decorated graphs to complex-valued functions on the Poincaré upper half plane with definite transformation properties. Specifically, modular graph functions are SL(2,Z)-invariant functions, while modular graph forms may be identified with SL(2,Z)-invariant differential forms. Modular graph functions and forms generalize, and at the same time unify, holomorphic and non-holomorphic Eisenstein series, almost holomorphic modular forms, multiple zeta-functions, and iterated modular integrals. For example, non-holomorphic Eisenstein series may be associated with one-loop graphs and represent a special class of modular graph functions. The expansion of modular graph forms at the cusp includes Laurent polynomials whose coefficients are combinations of Riemann zeta-values and multiple zeta-values, while each modular graph form may be expanded in a basis of iterated modular integrals. Eisenstein series and modular graph functions and forms beyond Eisenstein series occur naturally and pervasively in the study of the low-energy expansion of superstring amplitudes. Here we shall present a purely mathematical approach with only minimal reference to physics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.