We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This meta-analysis aimed to consolidate existing data from randomised controlled trials on hypoplastic left heart syndrome.
Methods:
Hypoplastic left heart syndrome specific randomised controlled trials published between January 2005 and September 2021 in MEDLINE, EMBASE, and Cochrane databases were included. Regardless of clinical outcomes, we included all randomised controlled trials about hypoplastic left heart syndrome and categorised them according to their results. Two reviewers independently assessed for eligibility, relevance, and data extraction. The primary outcome was mortality after Norwood surgery. Study quality and heterogeneity were assessed. A random-effects model was used for analysis.
Results:
Of the 33 included randomised controlled trials, 21 compared right ventricle-to-pulmonary artery shunt and modified Blalock–Taussig-Thomas shunt during the Norwood procedure, and 12 regarded medication, surgical strategy, cardiopulmonary bypass tactics, and ICU management. Survival rates up to 1 year were superior in the right ventricle-to-pulmonary artery shunt group; this difference began to disappear at 3 years and remained unchanged until 6 years. The right ventricle-to-pulmonary artery shunt group had a significantly higher reintervention rate from the interstage to the 6-year follow-up period. Right ventricular function was better in the modified Blalock–Taussig-Thomas shunt group 1–3 years after the Norwood procedure, but its superiority diminished in the 6-year follow-up. Randomised controlled trials regarding medical treatment, surgical strategy during cardiopulmonary bypass, and ICU management yielded insignificant results.
Conclusions:
Although right ventricle-to-pulmonary artery shunt appeared to be superior in the early period, the two shunts applied during the Norwood procedure demonstrated comparable long-term prognosis despite high reintervention rates in right ventricle-to-pulmonary artery shunt due to pulmonary artery stenosis. For medical/perioperative management of hypoplastic left heart syndrome, further randomised controlled trials are needed to deliver specific evidence-based recommendations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.