We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Among the microstructure defects in hexagonal graphitic boron nitride, the basal plane corrugations are of high relevance for the sp2 to sp3 phase transition under high pressures (HP) and high temperatures (HT). A microstructure model is described, which is capable of quantifying the amplitude of the basal plane corrugations on the basis of the anisotropic X-ray diffraction line broadening. It is illustrated that this model correctly reproduces the specific shape of the diffraction lines from corrugated basal planes, i.e., the characteristic splitting of the 00l peaks. The results from XRD are verified by direct observation in the transmission electron microscope with high resolution. Subsequent HP/HT experiments were performed in order to highlight the difference in the phase transition kinetics between hexagonal boron nitride samples with different amount of basal plane corrugations. The effect of these microstructure defects on the conversion rate and on the obtained synthesis product is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.