We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This investigation deals with the effect of cooling rate on the formation of carbide nodular iron alloyed with 2.2 % Cr and equivalent carbon near 4.3%. In the experimental stage three Y-blocks of 1.5, 3 and 5.5 cm in thickness are poured in green sand molds. Castings are sectioned in two positions (wall and center samples) in order to determine the characteristics of the precipitated carbides (fraction, distribution and relative size) from surface to center and from the bottom to the top of the castings applying quantitative analysis of images. The obtained results show the presence of carbides in all of the castings. Finer carbides are obtained in the thinnest casting but with a high variation between the samples located in the wall and center. All castings present massive carbides in the last freezing zone (LFZ). Therefore the cooling rate associated with casting thick has an important effect on the fraction and distribution of carbides.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.