We propose three latent scales within the framework of nonparametric item response theory for polytomously scored items. Latent scales are models that imply an invariant item ordering, meaning that the order of the items is the same for each measurement value on the latent scale. This ordering property may be important in, for example, intelligence testing and person-fit analysis. We derive observable properties of the three latent scales that can each be used to investigate in real data whether the particular model adequately describes the data. We also propose a methodology for analyzing test data in an effort to find support for a latent scale, and we use two real-data examples to illustrate the practical use of this methodology.