We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The dosimetric impact of volumetric modulated arc therapy (VMAT) in lung cancer compared with 3D conformal radiotherapy (3DCRT) is well known. However, this improvement is often associated with an increase in low doses. The aim of this study is to quantify these results more accurately.
Methods:
For each patient treated with 3DCRT, a second VMAT treatment plan was calculated. Usual dosimetric parameters such as target coverage or dose to the organs at risk were used to achieve the comparisons.
Results:
For planning target volume, homogeneity and conformity indices showed superiority of VMAT (respectively 0·07 and 0·87) compared to 3DCRT (0·11 and 0·57). For spinal cord planning organ at risk volume, the median maximum dose was 45·6 Gy in 3DCRT against 19·3 Gy in VMAT. Heart volume receiving at least 35 Gy (V35) decreased from 15·64% in 3DCRT to 8·28% in VMAT. Oesophagus V50 was higher in 3DCRT (25·45%) than in VMAT (14·03%). The mean lung dose was 17·9 Gy in 3DCRT versus 15·5 Gy in VMAT. Moreover, volumes receiving 5, 10 and 15 Gy were not significantly different between the two techniques when VMAT was performed with partial arcs.
Conclusion:
All the dosimetric parameters were improved with VMAT compared to the 3DCRT without increasing low doses when using partial arcs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.