The paper deals with the following problem: characterize Tichonov spaces X whose realcompactification υX is a Lindelöf Σ-space. There are many situations (both in topology and functional analysis) where Lindelöf Σ (even K-analytic) spaces υX appear. For example, if E is a locally convex space in the class 𝔊 in sense of Cascales and Orihuela (𝔊 includes among others (LM ) -spaces and (DF ) -spaces), then υ(E′,σ(E′,E)) is K-analytic and E is web-bounded. This provides a general fact (due to Cascales–Kakol–Saxon): if E∈𝔊, then σ(E′,E) is K-analytic if and only if σ(E′,E) is Lindelöf. We prove a corresponding result for spaces Cp (X) of continuous real-valued maps on X endowed with the pointwise topology: υX is a Lindelöf Σ-space if and only if X is strongly web-bounding if and only if Cp (X) is web-bounded. Hence the weak* dual of Cp (X) is a Lindelöf Σ-space if and only if Cp (X) is web-bounded and has countable tightness. Applications are provided. For example, every E∈𝔊 is covered by a family {Aα :α∈Ω} of bounded sets for some nonempty set Ω⊂ℕℕ.