Nitrogen is an essential element for biological activity, and nitrogen isotopic compositions of geological samples record information about both marine biological processes and environmental evolution. However, only a few studies of N isotopes in the early Cambrian have been published. In this study, we analysed nitrogen isotopic compositions, as well as trace elements and sulphur isotopic compositions of cherts, black shales, carbonaceous shales and argillaceous carbonates from the Daotuo drill core in Songtao County, NE Guizhou Province, China, to reconstruct the marine redox environment of both deep and surface seawater in the study area of the Yangtze shelf margin in the early Cambrian. The Mo–U covariation pattern of the studied samples indicates that the Yangtze shelf margin area was weakly restricted and connected to the open ocean through shallow water flows. Mo and U concentrations, δ15Nbulk and δ34Spy values of the studied samples from the Yangtze shelf margin area suggest ferruginous but not sulphidic seawater and low marine sulphate concentration (relatively deep chemocline) in the Cambrian Fortunian and early Stage 2; sulphidic conditions (shallow chemocline and anoxic photic zone) in the upper Cambrian Stage 2 and lower Stage 3; and the depression of sulphidic seawater in the middle and upper Cambrian Stage 3. Furthermore, the decreasing δ15N values indicate shrinking of the marine nitrate reservoir during the middle and upper Stage 3, which reflects a falling oxygenation level in this period. The environmental evolution was probably controlled by the changing biological activity through its feedback on the local marine environment.