We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the impact of leg position on the dose distribution during intracavitary brachytherapy for cervical cancer.
Patients and methods
This prospective study was performed on 11 women with cervical cancer who underwent intracavitary brachytherapy. After insertion of the brachytherapy applicator, two sets of computed tomography slices were taken including pelvis, one with straight leg and one with leg flexion position with knee support. The dose (7 Gy) was prescribed to point A. The radiotherapy plan was run on the Plato Planning Software System V14·1 to get the dose distributions. Also, rectum and bladder doses were measured for both leg positions during the treatment. The doses and volumes of organs were compared via the Wilcoxon signed-rank test by using Statistical Package for the Social Sciences 11·5 statistical software.
Results
No significant difference regarding the dose distributions and volumes of target, sigmoid and bladder due to leg position was observed, either on 3D planning or on in vivo dose measurements. However, there were significant differences for 25 and 50% isodose coverage of rectum in favour of straight leg position (p=0·026). There were no significant differences regarding maximum doses in any critical organ.
Conclusion
Difference in leg position caused only a small change in rectum dose distribution and did not cause any other change in either dose distributions or in vivo measured doses of both target and critical organs during cervical brachytherapy. Straight leg position appears better with regard to rectum dose.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.