The generation of high-order harmonics in ultraviolet spectral range by targets of periodic modulation interacting with relativistic, high contrast laser pulse (Iλ2 = 1020 W/cm2 · μm2) was investigated experimentally and numerically. The spectral intensity of the 2nd- and 3rd-order harmonic emission from grating of different periodicities (250, 410, and 480 nm) is presented. The enhancement of the 3rd harmonic order compared with 2nd was observed for a grating of 480 nm periodicity. The experimental results indicate the role of the grating periodicity on the emission efficiency of different higher order harmonics in the UV spectral range. The higher order harmonics are emitted at the grating surface separated from the specular reflection of the laser pulse, due of the interference effects. In addition, 2D numerical PIC simulations demonstrate a complex angular distribution of the higher harmonics (HH) spectral intensity and confirm the strong dependence of the HH efficiency of a specific order on the grating periodicity, as observed experimentally. These special features of the high harmonic emission by periodically modulated targets open the route toward the control of HH spectral composition and of the emission efficiency of the lower order harmonics.