We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If we pick n random points uniformly in
$[0,1]^d$
and connect each point to its
$c_d \log{n}$
nearest neighbors, where
$d\ge 2$
is the dimension and
$c_d$
is a constant depending on the dimension, then it is well known that the graph is connected with high probability. We prove that it suffices to connect every point to
$ c_{d,1} \log{\log{n}}$
points chosen randomly among its
$ c_{d,2} \log{n}$
nearest neighbors to ensure a giant component of size
$n - o(n)$
with high probability. This construction yields a much sparser random graph with
$\sim n \log\log{n}$
instead of
$\sim n \log{n}$
edges that has comparable connectivity properties. This result has non-trivial implications for problems in data science where an affinity matrix is constructed: instead of connecting each point to its k nearest neighbors, one can often pick
$k'\ll k$
random points out of the k nearest neighbors and only connect to those without sacrificing quality of results. This approach can simplify and accelerate computation; we illustrate this with experimental results in spectral clustering of large-scale datasets.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.