We derive moment identities for the stochastic integrals of multiparameter processes in a random-connection model based on a point process admitting a Papangelou intensity. The identities are written using sums over partitions, and they reduce to sums over non-flat partition diagrams if the multiparameter processes vanish on diagonals. As an application, we obtain general identities for the moments of k-hop counts in the random-connection model, which simplify the derivations available in the literature.