The Bangong–Nujiang suture zone (BNSZ), which separates the Gondwana-derived Qiangtang and Lhasa terranes, preserves limited geological records of the Bangong–Nujiang Ocean (BNO). The timing of opening of this ocean has been hotly debated due to the rare and complicated rock records in the suture zones, which span over 100 Ma from Carboniferous–Permian to Early Jurassic time, based on geological, palaeontological and palaeomagnetic data. A combination of geochemical, geochronological and isotopic data are reported for the Riasairi trachytes, central BNSZ, northern Tibet, to constrain its petrogenesis and tectonic settings. Zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields mean ages of 236 Ma. Geochemically, these rocks are high-K calc-alkaline with moderate SiO2 (59.1–67.5 wt%) and high K2O + Na2O (8.1–11.6 wt%) contents. They are enriched in light rare earth elements with negative Eu anomalies, and show enrichments in high-field-strength elements with positive ‘Nb, Ta’ anomalies, similar to the intra-continental rift setting-related felsic lavas from the African Rift System. The high positive zircon ϵHf(t) and bulk ϵNd(t) values, as well as high initial Pb isotopes, imply a heterogeneous source involving both asthenospheric and subcontinental lithospheric mantle. The field and geochemical data jointly suggest that the Riasairi trachytes within the Mugagangri Group were formed in a continental rift setting. We interpret that the continental-rift-related Riaisairi trachytic lavas as derived from the southern margin of the Qiangtang terrane, implying that the BNO would have opened by Middle Triassic time, well after the commonly interpreted break-up of the Qiangtang terrane from Gondwana.