Over the past few decades an increasing array of molecular-level analytical probes has provided new detailed insight into mineral and radionuclide interfacial reactivity in subsurface environments. This capability has not only helped change the way mineral surface reactivity is studied but also how field-scale contaminant migration problems are addressed and ultimately resolved. Here we review relatively new interfacial reactivity paradigms and assess their implications for future research directions. Specific examples include understanding the following: the role of site-to-site electron conduction at mineral surfaces and through bulk mineral phases and the effects of local chemical environment on the stability of intermediate species in oxidation-reduction reactions and the importance of mechanistic reaction pathways for defining possible reaction products and thermodynamic driving force. The discussion also includes examples of how detailed molecular/microscopic characterization of field samples has changed the way complex contaminant migration problems are conceptualized and modelled.