We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The proliferation of unmanned aerial vehicle (UAV) technology has the potential to change the situational awareness of medical incident commanders’ (ICs’) scene assessment of mass gatherings. Mass gatherings occur frequently and the potential for injury at these events is considered higher than the general population. These events have generated mass-casualty incidents (MCIs) in the past. The aim of this study was to compare UAV technology to standard practice (SP) in scene assessment using paramedic students during a mass-gathering event (MGE).
Methods:
This study was conducted in two phases. Phase One consisted of validation of the videos and accompanying data collection tool. Phase One was completed by 11 experienced paramedics from a provincial Emergency Medical Services (EMS) service. Phase Two was a randomized comparison with 47 paramedic students from the Holland College Paramedicine Program (Charlottetown, Prince Edward Island, Canada) of the two scene assessment systems. For Phase Two, the paramedic students were randomized into a UAV or a SP group. The data collection tool consisted of two board categories: primary importance with 20 variables and secondary importance with 25 variables. After a brief narrative, participants were either shown UAV footage or the ground footage depending on their study group. After completion of the videos, study participants completed the data collection tool.
Results:
The Phase One validation showed good consensus in answers to most questions (average 79%; range 55%-100%). For Phase Two, a Fisher’s exact test was used to compare each variable from the UAV and SP groups using a P value of .05. Phase Two demonstrated a significant difference between the SP and UAV groups in four of 20 primary variables. Additionally, significant differences were found for seven out of 25 secondary variables.
Conclusion:
This study demonstrated the accurate, safe, and feasible use of a UAV as a tool for scene assessment by paramedic students at an MGE. No observed statistical difference was noted in a majority of both primary and secondary variables using a UAV for scene assessment versus SP.
The proliferation of unmanned aerial vehicle (UAV) technology has the potential to change the way medical incident commanders (ICs) respond to mass-casualty incidents (MCIs) in triaging victims. The aim of this study was to compare UAV technology to standard practice (SP) in triaging casualties at an MCI.
Methods
A randomized comparison study was conducted with 40 paramedic students from the Holland College Paramedicine Program (Charlottetown, Prince Edward Island, Canada). Using a simulated motor vehicle collision (MVC) with moulaged casualties, iterations of 20 students were used for both a day and a night trial. Students were randomized to a UAV or a SP group. After a brief narrative, participants either entered the study environment or used UAV technology where total time to triage completion, GREEN casualty evacuation, time on scene, triage order, and accuracy were recorded.
Results
A statistical difference in the time to completion of 3.63 minutes (95% CI, 2.45 min-4.85 min; P=.002) during the day iteration and a difference of 3.49 minutes (95% CI, 2.08 min-6.06 min; P=.002) for the night trial with UAV groups was noted. There was no difference found in time to GREEN casualty evacuation, time on scene, or triage order. One-hundred-percent accuracy was noted between both groups.
Conclusion:
This study demonstrated the feasibility of using a UAV at an MCI. A non-clinical significant difference was noted in total time to completion between both groups. There was no increase in time on scene by using the UAV while demonstrating the feasibility of remotely triaging GREEN casualties prior to first responder arrival.
Jain T, Sibley A, Stryhn H, Hubloue I.Comparison of unmanned aerial vehicle technologyassisted triage versus standard practice in triaging casualties by paramedic students in a mass-casualty incident scenario. Prehosp Disaster Med. 2018;33(4):375–380
Effective emergency medical services (EMS) scene management contributes to the success of the response and mitigation phases. Management of large and sustained incidents is structured around command and general staff in association with geographical divisions, functional branches, and groups. Command and general staff consist of an incident commander or a unified command when multiple disciplines are needed to manage the incident. Reporting to the incident commander is the general staff: operations section chief, plans section chief, logistics section chief, and finance/administration section chief. To manage a multicasualty incident site, initial responders should establish an incident command system and appoint an incident commander and personnel to function as triage unit leader and medical communications coordinator. These essential three functions meet the initial needs of organizing resources, assessing the incident, reporting conditions and hazards (scene safety), requesting additional resources, initiating victim triage, and establishing communications with the EMS and healthcare infrastructure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.