Hydrothermal time (HTT) models describe the time course of seed germination for a population of seeds under specific temperature and water potential conditions. The parameters of the HTT model are usually estimated using either a linear regression, non-linear least squares estimation or a generalized linear regression model. There are problems with these approaches, including loss of information, and censoring and lack of independence in the germination data. Model estimation may require optimization, and this can have a heavy computational burden. Here, we compare non-linear regression with survival and Bayesian methods, to estimate HTT models for germination of two clover species. All three methods estimated similar HTT model parameters with similar root mean squared errors. However, the Bayesian approach allowed (1) efficient estimation of model parameters without the need for computation-intensive methods and (2) easy comparison of HTT parameters for the two clover species. HTT models that accounted for a species effect were superior to those that did not. Inspection of credibility intervals and estimated posterior distributions for the Bayesian HTT model shows that it is credible that most HTT model parameters were different for the two clover species, and these differences were consistent with known biological differences between species in their germination behaviour.