We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the Preface, we motivate the book by discussing the history of quantum computing and the development of the field of quantum algorithms over the past several decades. We argue that the present moment calls for adopting an end-to-end lens in how we study quantum algorithms, and we discuss the contents of the book and how to use it.
This chapter explores the origin, key components, and essential concepts of quantum computing. It begins by charting the series of discoveries by various scientists that crystallized into the idea of quantum computing. The text then examines how certain applications have driven the evolution of quantum computing from a theoretical concept to an international endeavour. Additionally, the text clarifies the distinctions between quantum and classical computers, highlighting the DiVincenzo criteria, which are the five criteria for quantum computing. It also introduces the circuit model as the foundational paradigm for quantum computation. Lastly, the chapter sheds light on the reasons for the belief that quantum computers are more powerful than classical ones (touching on quantum computational complexity) and physically realizable (touching on quantum error correction).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.