This study illustrates the dynamical reconfiguration of a concentric hexagonal antenna array radiation to generate a pencil beam and flat-top beam simultaneously by electronic control in two principle vertical planes under consideration. Both the beams share a common normalized optimal current excitation amplitude distribution while the optimal sets of phase excitation coefficients are varied radically across the hexagons to generate a flat-top beam. The proposed approach is able to solve the underlying multi-objective problem and flexible enough to the efficient implementation of additional design constraints in the considered φ-planes. In this paper, a set of simulation-based examples are presented in an integrated way. The outcomes validate the effectiveness of the stated optimization using meta-heuristic optimization algorithms (teaching–learning-based optimization, symbiotic organism search, multi-verse optimization) to reach the solution globally and prove actual relevance to the concerned applications.