We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The application of gravity gradient measurements to exploration has been growing over the past 20 years. The ability of tensor gradiometry instruments to greatly improve signal/noise when deployed on mobile platforms has transformed the usefulness of this technology. Airborne and marine Full Tensor Gradiometry (FTG) surveys have become an increasingly common part of the exploration and production toolkit. The ability of the modern instruments to provide high-resolution, spatial accuracy and very good signal/noise data has made this technology a more common part of integrated exploration and production management. The technology has a distinct cost advantage over seismic data acquisition and as such can deliver a competitive solution for imaging problems in some circumstances. There are now numerous published examples of effective use of FTG in the oil industry. The development of better instruments such as integration of direct contemporaneous measurement of conventional gravity is encouraging more interest in the technology. The potential for extending the use of FTG to reservoir monitoring and carbon dioxide sequestration assurance is likely to increase the popularity of the technology in future.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.